Главная - Астрофизика - Астрофизические исследования с воздушных шаров, самолетов и космических аппаратов. Понятие о радиолокационных методах


Астрофизические исследования с воздушных шаров, самолетов и космических аппаратов. Понятие о радиолокационных методах
Наука - Астрофизика

До начала сороковых годов XX в. астрономы использовали для своих наблюдений почти исключительно визуальную область спектра и прилегающие к ней участки приблизительно от 3000 до 7000 Aring;. После окончания второй мировой войны стали быстро развиваться радиоастрономические методы исследования (радиоастрономия). Успехи радиоастрономии показали, как важно вести исследования в новых областях спектра, распространить наблюдения на возможно более широкий диапазон длин волн. Однако земная атмосфера непрозрачна в области l  < 3000 Aring; и 15 мк < l  < 1 мм. Следовательно, возникла задача проведения астрономических исследований вне земной атмосферы.

В принципе сравнительно просто эта проблема решается для инфракрасного и субмиллиметрового излучения (15 мк < l  < < 1 мм). Основным веществом, поглощающим инфракрасную радиацию, является водяной пар, концентрация которого быстро уменьшается с высотой. На высотах около 25-30 км земная атмосфера становится прозрачной для инфракрасного излучения. Эти высоты вполне доступны современным воздушным шарам ( #8220;баллонам #8221;), грузоподъемность которых достаточна, чтобы нести довольно большой телескоп диаметром до 1 м. Наблюдения с такой высоты имеет смысл проводить и в видимой области спектра, так как атмосферное дрожание здесь уже не будет ограничивать разрешающей силы телескопа. Первый #8220;баллонный #8221; телескоп #8220;Стратоскоп-1 #8221; (диаметром в 50 см) был построен в США для фотографирования солнечной грануляции. Другой американский баллонный телескоп #8220;Стратоскоп-2 #8221; (диаметром 90 см) запускался с целью исследования инфракрасных спектров планет и звезд. Подобные телескопы управляются в полете с Земли по

радио. Телевизионные камеры, установленные на искателе, гиде и в фокусе Кассегрена, позволяют наводить телескоп на объект почти так же уверенно, как и при обычных наземных наблюдениях. В СССР успешно проводились полеты стратосферного солнечного телескопа с целью фотографирования солнечной грануляции.

Для инфракрасной астрономии большие перспективы связаны с возможностью установки телескопов на самолетах. Самолетные летающие обсерватории не могут подниматься на такую большую высоту, как баллонные телескопы, однако они имеют ряд преимуществ (управляемый полет, присутствие наблюдателя на борту и т.п.).

В ультрафиолетовой и рентгеновской областях спектра земная атмосфера поглощает так сильно, что для их изучения надо поднимать аппаратуру на высоту не менее 100 км над земной поверхностью, а это можно сделать только с помощью ракет и искусственных спутников Земли. Ракеты можно запускать чаще, но зато время их полета ограничено: всего несколько минут. На борту ракет и спутников устанавливаются небольшие телескопы с фотоэлектрическими фотометрами, спектральными аппаратами, приборы для приема рентгеновского излучения. Приборы действуют автоматически по заданной программе, а наблюдательный материал передается по радио, либо, в случае ракет и приземляющихся спутников, может быть получен исследователем по окончании полета. Обычно головка ракеты с научным оборудованием (приборный отсек) отделяется от ракеты (до того, как она входит в плотные слои атмосферы) и опускается на парашюте.

Американский искусственный спутник #8220;Ухуру #8221; ( #8220;Свобода #8221; на языке суахили; запуск производился в Африке в 1970 г.) был специально сконструирован для получения

карты всего неба в рентгеновских лучах (энергии квантов от 2 до 10 кэв). С его

помощью было обнаружено 125 рентгеновских источников, из которых более половины

ранее не были известны. Другой астрономический спутник #8220;ОАО-3 #8221;, или #8220;Коперник #8221; (названный в честь великого польского астронома и запущенный в 1973 г., когда

праздновался юбилей Коперника - 500 лет со дня рождения), представляет собой

телескоп-рефлектор диаметром 80 см, снабженный ультрафиолетовым спектрометром. С

его помощью были получены спектры большого количества звезд в области от 700 до

3000 Aring;, недоступной наблюдениям с Земли. Автоматическая система

фотоэлектрического гидирования при помощи небольших реактивных двигателей

ориентации поддерживала при регистрации спектра точность наведения до 0 ,1.

В настоящее время астрономия и космическая техника подошли вплотную к созданию длительно действующих крупных телескопов, специально сконструированных для работы на орбитах искуственных спутников Земли. Такой телескоп должен иметь систему автоматического наведения и высокоточной ориентации. Для технического обслуживания его будут периодически посещать космонавты. Большое значение для создания подобных космических обсерваторий имеет опыт работы, полученный советскими космонавтами на орбитальных станциях типа #8220;Салют #8221;. Другое важное направление, связанное с прогрессом ракетной техники, - это исследование Солнечной системы автоматическими межпланетными станциями. Советские автоматические станции трижды фотографировали обратную сторону Луны (в 1959, 1965 и 1969 гг.). 3 февраля 1966 г. Советский Союз впервые осуществил мягкую посадку автоматической станции на Луну и передачу изображения непосредственно с ее поверхности ( #8220;Луна-9 #8221;). 3 апреля 1966 г. впервые был успешно выведен на орбиту искусственный спутник Луны (советская станция #8220;Луна-10 #8221;). Широкая программа исследования Луны осуществлялась также американскими учеными с помощью аппаратов типа #8220;Рейнджер #8221; (лунные станции с жесткой посадкой), #8220;Орбитер #8221; (искусственные спутники Луны), #8220;Сервейор #8221; (станции с мягкой посадкой) и #8220;Аполлон #8221; (станции, обеспечивающие высадку астронавтов на Луну). Американская программа ставила целью доставить на Луну человека.

Советская программа была нацелена по-иному: исследовать Луну с помощью

автоматических станций. Эти станции были двух типов: подвижные #8220;луноходы #8221; ( #8220;Луноход-1 и 2 #8221;) и станции, обеспечивающие доставку грунта с Луны на Землю ( #8220;Луна-16, 20 и 24 #8221;). Космические аппараты СССР и США совершили успешные полеты к Венере, Марсу, Меркурию и Юпитеру. Для исследования планет используются автоматические межпланетные станции (АМС) трех различных модификаций: а) пролетные, которые совершают однократное (в некоторых случаях двух - или трехкратное) прохождение вблизи исследуемой планеты, б) орбитальные, т.е. выводимые на орбиту искусственных спутников, и в) спускаемые, т.е. опускающиеся прямо на поверхность планеты и обеспечивающие прямые измерения физико-химических характеристик атмосферы, а иногда и поверхности. Пролетные аппараты - это своего рода разведчики: они получают сравнительно небольшой объем данных. Орбитальные аппараты позволяют обследовать значительную часть планеты, но только дистанционными (оптическими и радиофизическими) методами. Спускаемые аппараты получают весьма детальные данные об атмосфере и поверхности (недоступные пролетным и орбитальным аппаратам), но только в месте посадки. Наиболее оптимальным является сочетание орбитального и спускаемого аппарата, когда их данные взаимно дополняются. Такие сочетания были осуществлены в советских исследованиях Марса и Венеры. В 1974 г. были совершены вывод на орбиту

искусственного спутника Марса #8220;Марс-5 #8221; и посадка спускаемого аппарата #8220;Марс-6 #8221;. В 1975 г. на орбиту искусственных спутников Венеры были выведены два

искусственных спутника и совершили посадку два спускаемых аппарата (АМС

#8220;Венера-9 #8221; и #8220;Венера-10 #8221;). Это были первые в мире искусственные спутники Венеры, а спускаемые аппараты впервые в мире передали на Землю изображение поверхности

другой планеты. Советские спускаемые аппараты типа #8220;Венера #8221; исследуют атмосферу

Венеры начиная с 1967 г.

Ввиду   исключительной важности этих экспериментов мы опишем их более детально.

Главной научной задачей АМС являлось определение основных физических параметров атмосферы планеты  (температуры и давления) и ее химического состава. Станции состояли из орбитального отсека и спускаемого аппарата. Общий вид станции #8220;Венера-4 #8221; дан на рис. 120. Орбитальный отсек нес спускаемый аппарат, научные приборы для исследований на трассе полета, солнечные батареи, радиокомплекс и устройства, необходимые для коррекции полета, в том числе жидкостный реактивный двигатель. Операция коррекции представляет собой исправление орбиты, которое вводится в определенный момент полета, когда АМС отошла от Земли достаточно далеко и определено, насколько реальная орбита отклонилась от заданной. Советские автоматические станции входили в атмосферу Венеры, в соответствии с программой, на второй космической скорости и по мере снижения тормозились. Когда перегрузки достигали определенной достаточно большой величины, происходило разделение спускаемого аппарата и орбитального отсека. Спускаемый аппарат представлял собой сферу диаметром около 1 м с теплоизоляцией, способной предохранить аппарат от сгорания при торможении. Когда он тормозился до скорости около 300 м/сек, по команде датчика внешнего давления вводились в действие тормозной и основной парашюты, которые уменьшали скорость снижения до нескольких метров в секунду. Одновременно с этим раскрывались антенные системы и включались радиовысотомер и радиопередатчик. Затем шла передача результатов изменений давления, плотности, температуры, химического состава и других данных по мере снижения спускаемого аппарата. Начиная с #8220;Венеры-7 #8221; (1970 г.) измерения проводились не только при спуске, но и в течение некоторого времени после посадки на поверхность планеты (рис. 121).

Помимо измерений на спускаемых; аппаратах, проводившихся в нижних слоях атмосферы Венеры, важные результаты были получены с помощью научной аппаратуры, установленной на орбитальных отсеках. Эта аппаратура позволила получить данные о строении облачного слоя, надоблачной атмосферы, о полях и частицах в окрестностях планеты.

На Марс посадить космический аппарат еще труднее, чем на Венеру, из-за малой плотности его атмосферы. Мягкая посадка на Марс была впервые осуществлена советским спускаемым   аппаратом   #8220;Марс-3 #8221; (2 декабря 1971 г.), который отделился от автоматической станции, ставшей  искусственным  спутников планеты. До недавнего времени общине свойством всех астрономических методов был их пассивный характер: мы только наблюдали явления, регистрировали то, что природа сама нам показывала. Этим астрономия принципиально отличалась от физики, в основе которой лежит эксперимент - активный метод исследования. Экспериментатор не просто наблюдает явления природы, а вторгается в них, меняет условия опыта и, конечно, имеет больше шансов понять сущность явлений, чем если бы он ограничился пассивным наблюдением.

Полеты космических кораблей постепенно превращают астрономию в экспериментальную науку. Со временем в исследовании планет и межпланетного пространства роль эксперимента в астрономии будет, по-видимому, быстро возрастать.

Заметим, что полеты АМС являются не единственным средством экспериментального исследования Солнечной системы. Чисто экспериментальным методом является и радиолокация небесных тел. В направлении космического тела посылается мощный импульс радиоволн и принимается отраженный импульс. По запаздыванию отраженного импульса можно определить расстояние, по величине - коэффициент отражения. Форма импульса позволяет судить о размерах тела и степени гладкости его поверхности. Вращение исследуемого тела вызывает расширение импульса по частоте вследствие эффекта Доплера, и скорость вращения может быть определена по величине размытия. Могут исследоваться отражения от отдельных деталей на поверхности планет, облачного слоя, ионосферы и т.д. Конечно, такой способ годится только для объектов не очень удаленных; по-видимому, радиолокации никогда не удастся выйти за пределы Солнечной системы. Что же касается изучения самой Солнечной системы, то в этом радиолокация добилась уже больших успехов, а возможности ее использованы далеко не полностью. В качестве важнейших достижений радиолокационного метода укажем на измерение расстояния до Венеры, которое привело к значительному уточнению астрономической единицы, а также на определение периода вращения и радиуса этой планеты (см sect; 135).

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Планеты соседи:

Открытие спутника

News image

22 июня 1978 г. Дж. У. Кристи из Морской обсерватории в ...

Меркурий

News image

Меркурий - самая близкая к Солнцу планета. Среднее расстояние от Ме...

Нептун. Общие сведения

News image

Нептун - восьмая по счету планета Солнечной системы. Средняя удаленность Не...

Строение Солнца

News image

ЯДРО - где температура в центре равна 27 м...

В космосе...

Мой взгляд на космические журналы. Космонавт У Цзе о «Н

News image

Уже достаточно давно у меня сформировалось определенное отношение к космическим журналам. В 1997 г. я приехал учиться в российский Центр по...

Огненный шар при всплеске гамма-излучения

News image

Изображение (Космический телескоп Хаббл ) ослабевающего огненного шара, который возник в результате одного из наиболее таинственных явлений Вселенной - вспл...

С Байконура стартовал первый Прогресс с цифровым упра

News image

С космодрома Байконур успешно стартовал космический корабль Прогресс М-01М . На орбиту аппарат доставит ракета-носитель Союз-У . ...

Обнаружены 12 новых пульсаров

News image

Пульсары представляют собой вращающиеся нейтронные звезды, которые могут испускать излучение с различными длинами волн, приходящее на Землю в виде достаточно ко...

Авторизация



Новости космонавтики:

Коррекция прикуса у детей: возможности с

News image

Здоровые зубы - это не просто важно, а обязательно. Проблем с зубами существует достаточно много, и практически каждая из них не отличается легкостью в лечении. ...

Работа помощник бурильщика эрбс и что с

News image

Газонефтяные залежи можно отыскать как на суше, так и под морским дном. В зависимости от объемов сырья привлекается различное число тяжелой техники и масштаб подготовки ...

Металлолом цена черный

News image

Черный металл - мы обычно понимаем под этим термином. Он постоянно перерабатывается и используется везде и всюду. Человек не знает жизни без металла и активно добывает окаменелости же...

Нержавейка цена за 1 кг

News image

Если в составе стали присутствует никель и легированной хромом тогда металл получает высокую стойкость к негативным факторам. Сплав сохраняет свою прочность и остальные свойства. Поэтому ме...