Главная - Задачи астрономии - Физические условия в недрах и строение звезд


Физические условия в недрах и строение звезд
Наука - Задачи астрономии

Если для некоторой звезды известны масса и радиус, то можно получить представление о физических условиях в ее недрах точно таким же путем, как это было сделано для Солнца (см. sect; 120). Из формулы (9.10) видно, что температура Т в недрах звезды прямо пропорциональна ее массе M и обратно пропорциональна ее радиусу R; в частности, для температуры Т0 в центре звезды можно записать

(11.20)

где К - некоторый коэффициент пропорциональности. Примерное его значение, справедливое, разумеется, только для звезд, сходных с Солнцем, можно оценить из условия, что при R = RЅ  и M = MЅ температура T0 близка к 15 000 000±. Отсюда получаем, что температура в центре похожих на Солнце звезд главной последовательности

(11.21)

Для звезд главной последовательности отношение M/R, входящее в формулу (11.21), можно выразить из формул (11.18) и (11.19), исключив светимости. Тогда

(11.22)

Следовательно, для таких звезд

(11.23)

Из рис. 197 видно, что по мере продвижения вверх вдоль главной последовательности радиусы звезд увеличиваются. Поэтому и температуры в недрах звезд главной последовательности постепенно возрастают с увеличением светимости. Так, например, для звезд подкласса B0V температура в центре составляет около 30 миллионов, а для звезд K0V она чуть меньше 10 миллионов градусов.

От значения температуры сильно зависит характер ядерных реакций в недрах звезды. На рис. 199 показано, как зависит от температуры Т количество энергии Е, выделяющейся в результате углеродного цикла и протон-протонной реакции, и отмечены условия, соответствующие центру Солнца и двух звезд главной последовательности - спектральных классов В0 и М0. Из положения Солнца на этом графике видно, что в недрах звезд главной последовательности поздних спектральных классов G, К и М, как и в Солнце, выделение ядерной энергии в основном происходит в результате протон-протонной реакции. В горячих звездах ранних спектральных классов, в недрах которых температура выше и составляет десятки миллионов градусов, главную роль играет превращение водорода в гелий за счет углеродного цикла. В результате этой реакции выделяется значительно большая энергия, чем при протон-протонной реакции, что и объясняет большую светимость звезд ранних спектральных классов.

Таким образом, следует ожидать, что звезды, располагающиеся в разпичных участках диаграммы спектр - светимость отличаются своим строением. Это подтверждается теоретическими расчетами равновесных газовых конфигураций, выполненными для определенных значений химического состава, массы, радиуса и светимости звезды (так называемых моделей звезд).

Звезды верхней части главной последовательности. Это горячие звезды с массой больше солнечной, из-за чего температура и давление в их недрах выше, чем у звезд более поздних спектральных классов, и выделение термоядерной энергии происходит ускоренным темпом через углеродный цикл. В результате светимость у них также больше, а потому эволюционировать они должны быстрее. Отсюда естественно заключить, что горячие звезды, находящиеся на главной последовательности, должны быть молодыми.

Поскольку выделение энергии при углеродном цикле пропорционально очень высокой степени температуры (~ T20), а поток излучения, согласно закону Стефана - Больцмана, растет как T4 излучение оказывается неспособным вынести из недр звезды энергию, возникающую там в углеродном цикле. Поэтому переносить энергию должно само вещество, которое начинает перемешиваться, и в недрах массивных звезд главной последовательности возникают центральные конвективные зоны. Для звезды с массой в 10 масс Солнца радиус внутренней конвективной зоны составляет около четверти радиуса звезды, а плотность в центре раз в 25 превосходит среднюю. Окружающие конвективное ядро слои звезды находятся в лучистом равновесии, подобно тому как это имеет место в зоне лучистого равновесия на Солнце ( sect; 120).

Звезды нижней части главной последовательности по своему строению подобны

Солнцу. При протон-протонной реакции мощность энерговыделения зависит от температуры почти так же, как и поток излучения, в центре звезды конвекция не возникает и ядро оказывается лучистым. Зато из-за сильной непрозрачности более холодных наружных слоев у звезд нижней части главной последовательности образуются протяженные наружные конвективные оболочки (зоны). Чем холоднее звезда, тем на большую глубину происходит перемешивание. Если у Солнца только 2% наружных подфотосферных слоев охвачены конвекцией, то у карлика KV с массой 0,6 MЅ в перемешивании участвует 10% всей массы.

Субкарлики, отличающиеся низким содержанием тяжелых элементов, - хороший пример существенной зависимости строения звезды от химического ее состава. Непрозрачность звездного вещества оказывается пропорциональной содержанию тяжелых элементов, поскольку в сильно ионизованной плазме все легкие элементы полностью лишены своих электронов и атомы их не могут поглощать кванты. В основном поглощение производят ионизованные атомы тяжелых элементов, сохранившие еще часть своих электронов. Субкарлики - старые звезды, возникшие на ранних стадиях эволюции Галактики из вещества, не побывавшего еще в недрах звезд, а потому бедного тяжелыми элементами. Поэтому вещество субкарликов отличается большей прозрачностью по сравнению с звездами главной последовательности, что облегчает лучистый перенос энергии из их недр, не требующий возникновения конвективных зон.

Красные гиганты имеют крайне неоднородную структуру. К этому выводу легко прийти, если рассмотреть, как должна меняться со временем структура звезд главной последовательности. По мере выгорания водорода в центральных слоях звезды область энерговыделения постепенно смещается в периферические слои. В результате образуется тонкий слой энерговыделения, где только и  может происходить водородная реакция. Он разделяет звезду на две существенно различные части: внутреннюю - почти лишенное водорода гелиевое ядро, в котором ядерных реакций нет по причине отсутствия водорода, и внешнюю, в которой, хотя и есть водород, но температура и давление недостаточны для протекания реакции. На первых порах давление в слое энерговыделения больше, чем в ядре, которое поэтому начинает сжиматься, и, выделяя гравитационную энергию, разогревается. Это сжатие происходит до тех пор, пока газ не станет вырожденным (у такого газа давление не

зависит от температуры; см. sect; 104). Тогда огромное давление, необходимое для предотвращения дальнейшего сжатия, обеспечится неимоверным увеличением плотности. У звезды с массой в 1,3 MЅ, как показывает расчет, возникает ядро, состоящее в основном из гелия, в который превратился весь находившийся в нем водород. Температура гелиевого ядра при этом недостаточно велика для того, чтобы началась следующая возможная ядерная реакция превращения гелия в углерод. Поэтому гелиевое ядро оказывается лишенным ядерных источников энергии и изотермичным. Оно содержит около четверти массы всей звезды, но при этом обладает размерами только в 1/1000 ее радиуса. Плотность в центре такого ядра достигает 350 кг/см3! Оно окружено оболочкой почти такой же протяженности, где происходит энерговыделение. Затем следует лучистая зона толщиной и 0,1 радиуса. Примерно 70% (по массе) наружных слоев звезды, составляющих 0,9 ее радиуса, образуют мощную конвективную зону красного гиганта.

Белые карлики. Важной особенностью только что рассмотренной структуры красного гиганта является образование в его недрах изотермичного объекта с массой порядка массы Солнца или меньше, состоящего из вырожденного газа, в основном гелия. На диаграмме Герцшпрунга - Рессела этот объект должен располагаться в нижнем левом углу, так как при значительной температуре он в силу малых своих размеров (10-2-10-3RЅ) должен обладать малой светимостью. Как видно из рис. 195 и 197, это соответствует области белых карликов.

Таким образом, белые карлики оказываются сверхплотными вырожденными звездами, по-видимому, исчерпавшими водородные источники термоядерной энергии. Плотность в центре белых карликов может достигать сотен тонн в кубическом сантиметре! Медленно остывая, они постепенно излучают огромный запас тепловой энергии вырожденного газа. С увеличением массы белого карлика газовое давление в его недрах должно противостоять еще большей силе гравитации, которая растет быстрее, чем давление вырожденного: газа. Поэтому более массивные белые карлики сильнее сжаты и для них имеет место четкая зависимость радиуса звезды от ее массы.

Однако начиная с некоторого значения массы, давление вырожденного газа не: может уравновесить силу гравитации. Такая звезда может неограниченно сжиматься (коллапсировать). Коллапс неизбежен при массах, привышающих, примерно, 2-3 MЅ.

Он был бы неизбежен при M > 1,2 MЅ, если бы не возможность превращения звезды в нейтронную, когда силам гравитации способно противостоять давление вырожденного нейтронного газа . Правда, прежде чем это произойдет, звезда должна испытать ядерный взрыв, наблюдаемый как вспышка сверхновой звезды (см. sect; 159), в результате которого выделится вся возможная ядерная энергия и вещество, перейдет в форму нейтронов. Однако при массах больше 2-3 солнечных даже давление вырожденных нейтронов не в состоянии противостоять гравитации. Теперь уже ничто не может предотвратить безудержное сжатие звезды. Особая ситуация должна возникнуть, когда радиус коллапсирующей звезды станет меньше  где с - скорость света. Как видно из формулы (2.20), в этом случае параболическая скорость оказывается больше скорости света. Иными словами, ничто, даже световой квант из звезды, не может уйти. Очевидно, что такой объект станет невидим. Правда, как мы увидим в sect; 160, в некоторых случаях, в принципе, можно наблюдать вещество вблизи него. Такое, теоретически возможное, гипотетическое состояние звезды называют черной дырой.

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Планеты соседи:

Фотосфера

News image

Видимая поверхность Солнца. Достигая толщины около 0,001 RD (200-300 км), пл...

Венера. Общие сведения

News image

Венера, вторая по счету планета Солнечной системы. Она имеет такой же...

Марс. Общие сведения

News image

Марс - четвертая планета Солнечной системы. По основным физическим характеристикам Ма...

Солнечная атмосфера

News image

Вся солнечная атмосфера постоянно колеблется. В ней распространяются как ...

В космосе...

Cуборбитальные полеты за 95 тысяч долларов

News image

Американская туристическая компания RocketShip Tours объявила первые тарифы на суборбитальные туристические полеты, сообщается в пресс-релизе на ее официальном сайте. В ка...

В ранних галактиках обнаружены сильные гравитационные п

News image

На основе серии последних наблюдений за несколькими галактиками, в том числе и за нашей, ученые пришли к выводу, что гравитационное по...

Космонавтика энтузиастов

News image

Настойчивость и упорство ученых, энтузиастов и пропагандистов ракетной техники Н.И.Тихомирова, Ф....

На Марсе найден след от астероида

News image

Американские специалисты обнаружили на Марсе вмятину огромного размера. Ранее она была скрыта огромной вулканической областью - нагорьем Фарсида . До настоящего мо...

Авторизация



Новости космонавтики:

Пластична операція в Рівному. Лазерне лі

News image

Як кажуть у людей “Скрипуче колесо довго їздить”. Тобто треба наглядати за собою. Медичний центр Тарасюка є одним з кращих в Рівному. Головними напрямками роботи ...

Печать на табличках в Киеве (Форвард При

News image

Если вы работали с типографиями, скорее всего, в курсе, что многие из них даже не обладают собственными станками для печати. В такой типографии работает штат ...

Найти и купить щеповоз (ЛОГИНТЕХ): мнени

News image

В современном мире, в век сравнительно глобального прогресса инженерной мысли, человеку уже непросто обойтись без своих главных компаньонов: без специализированных механизмов, созданных чтобы облегчать зачастую ...

Найти и календари в Киеве: рекомендации

News image

Новые должности и работники – незаменимый атрибут компании, которая старается расти и систематически создает свежие вакансии. Следовательно, это создает постоянно новые красные даты в году ...