Наука -
Задачи астрономии
|
Часто на небе встречаются две или несколько близко расположенных звезд.
Некоторые из них на самом деле далеки друг от друга и физически не связаны между собой. Они только проектируются в очень близкие точки на небесной сфере и потому называются оптическими двойными звездами. В отличие от них, физическими двойными называются звезды, образующие единую динамическую систему и обращающиеся под действием сил взаимного притяжения вокруг общего центра масс. Иногда наблюдаются объединения трех и более звезд (тройные и кратные системы)
|
Наука -
Задачи астрономии
|
Известны звезды, которые являются как бы наглядной иллюстрацией того, что красные гиганты могут превращаться в белые карлики. Нас они интересуют еще и потому, что окружены горячей газовой оболочкой, свойства которой напоминают газовые туманности, рассматриваемые в следующей главе. Но внешнему сходству с дисками планет, наблюдаемыми в телескоп, они называются планетарными туманностями (рис. 200). В центре их всегда можно заметить ядро - горячую звезду, спектр которой напоминает спектр звезд Вольфа - Райе (см
|
Наука -
Задачи астрономии
|
Спектроскопическими методами удается наблюдать излучение главным образом фотосфер и в некоторых случаях хромосфер звезд. Для изучения физических условий в звездных атмосферах в принципе должны быть применены те же самые методы, что и для исследования солнечной фотосферы. Однако из наблюдений звезды, как правило, невозможно установить распределение яркости по ее диску. Поэтому определение изменения температуры с оптической глубиной может быть выполнено только теоретически. Как мы видели на примере Солнца, конкретные свойства фотосферы зависят от эффективной температуры, массы и радиуса звезды
|
Наука -
Задачи астрономии
|
Если для некоторой звезды известны масса и радиус, то можно получить представление о физических условиях в ее недрах точно таким же путем, как это было сделано для Солнца (см. sect; 120). Из формулы (9.10) видно, что температура Т в недрах звезды прямо пропорциональна ее массе M и обратно пропорциональна ее радиусу R; в частности, для температуры Т0 в центре звезды можно записать
(11.20)
где К - некоторый коэффициент пропорциональности
|
Наука -
Задачи астрономии
|
Формула (11.17) связывает между собой три важные характеристики звезды - радиус, светимость и эффективную температуру. Вместе с тем, как мы уже знаем, имеется важная эмпирическая зависимость между спектром, т.е. фактически температурой, и светимостью (диаграмма Герцшпрунга - Рессела)
|
|
|
<< Первая < Предыдущая 11 12 13 14 15 16 17 18 19 20 Следующая > Последняя >>
|
Страница 19 из 21 |