Главная - Радиоастрономия - Основные понятия радиоастрономии


Основные понятия радиоастрономии
Наука - Радиоастрономия

Диапазон частот, используемых в радиоастрономии, ограничен снизу пропусканием земной ионосферы. Граничная частота пропускания зависит от времени года и суток, она колеблется от 3 до 30 МГц. Высокочастотная граница (условно) составляет около 300 ГГц = 3×1011 Гц (l=1 мм). Далее начинается область субмиллиметровой радиоастрономии, пограничная с ИК-диапазоном. На миллиметровых волнах возможности наземных наблюдений ограничены поглощением в атмосфере Земли, главным образом молекулами O2 (особенно вблизи частот 55–65 и 118 ГГц) и H2O. Благодаря развитию внеатмосферной радиоастрономии стали доступны гораздо более низкие частоты, вплоть до нескольких килогерц (длина волны до сотен километров). На волнах l £ 1 мм применяется главным образом ИК-техника (болометры, оптические зеркала), то есть граница между радиоастрономией и ИК-астрономией довольно зыбкая.

В таблице 1 приводится классификация типов космического радиоизлучения, выделяемых по различным признакам.

Энергетические единицы, применяемые в радиоастрономии. Для протяженного объекта (фон, дискретные источники с угловыми размерами, большими, чем главный лепесток диаграммы направленности радиотелескопа) можно измерить интенсивность излучения I, которая характеризует количество энергии, падающей на единицу поверхности в единицу времени с единичного телесного угла в единичном интервале частот. Поток энергии dW, падающий под углом q на площадку dA с телесного угла dW в полосе частот dn, выражается через интенсивность I так:

Коэффициент пропорциональности I и называется интенсивностью. Единицы измерения I [Дж/(с м2 Гц стерад) ® Вт/(м2 Гц стерад)] = 107 эрг/(104  см2 с Гц стерад) = 103 эрг/(см2 с Гц стерад).

Вместо интенсивности часто используют понятие яркостной температуры. Предположим, что источник излучает как абсолютно черное тело с температурой T. Тогда спектральное распределение интенсивности его излучения описывается функцией Планка:

В (1.2) h – постоянная Планка (h = 6.6×10-34 Дж/с), kB – постоянная Больцмана(kB = 1.4×10-23 Дж/К). В радиодиапазоне hn << kBT (энергия кванта очень мала). Проверим это неравенство при следующих значениях параметров: n=1010 Гц (l=3 см), T = 100 K, получим: 6.6×10-24 « 1.4×10-21, то есть неравенство с большим запасом выполняется. Оно может нарушаться только в самой коротковолновой части миллиметрового диапазона, поэтому в подавляющем большинстве случаев в радиоастрономии можно использовать приближение Рэлея–Джинса:

(1.3)

Последняя формула используется для определения яркостной температуры  по известной из наблюдений интенсивности радиоизлучения :

В общем случае Tb – функция частоты. Лишь для теплового источника в некоторой области частот, где источник излучает, как абсолютно черное тело, Tb не зависит от частоты; в этом случае (пример – оптически толстая зона ионизованного водорода, §5.3, рис. 2.2) при соблюдении некоторых условий (пространственная однородность, изотермичность) Tb равна температуре источника. В других же случаях яркостная температура – чисто формальная величина, представляющая собой просто другую меру для интенсивности излучения. Так, на метровых волнах Tb галактического фона достигает 106 K, а у Юпитера во время всплесков декаметрового радиоизлучения – до 1015 K. Никакой физической температуре это, разумеется, не соответствует. Радиоастрономы вообще любят выражать многие величины, с которыми имеют дело, в температурных единицах, примеры: антенная температура, шумовая температура и т.д.

По пространственному распределению

Фоновое (нетепловое излучение Галактики, реликтовый фон)

Дискретные источники (излучающие области на небе с достаточно четкими границами, хотя бы и размером в несколько градусов)

По спектральному составу

Излучение с непрерывным спектром (тепловое, нетепловое)

Монохроматическое излучение (излучение в спектральных линиях атомов и молекул; как частный случай, поглощение в спектральных линиях)

По временным характеристикам

Постоянное или медленно меняющееся

Импульсное (пульсары)

По поляризации

Неполяризованное

Поляризованное (линейно, по кругу).

Можно ввести яркостную температуру и для излучения в спектральной линии, например, l = 21 см. Вне линии оптическая глубина излучающего газа t очень мала, а на частоте линии она заметно больше. Если в линии t>>1, то на частоте линии яркостная температура равна температуре возбуждения перехода, дающего линию. В свою очередь, температура возбуждения Tx определяется отношением населенностей  и  уровней, участвующих в переходе:

Здесь  — энергия перехода, а и  — статистические веса уровней. Если газ достаточно плотный и условия близки к локальному термодинамическому равновесию (ЛТР), то температура возбуждения равна температуре газа.

Понятие яркостной температуры имеет практическое значение лишь для источника с известной угловой структурой (по крайней мере, с известным угловым размером или известным телесным углом dW). Если же источник, как говорят, точечный и не разрешается по углу данной антенной, то мы измеряем для него лишь интеграл от интенсивности, взятый в пределах телесного угла источника. Вспомним формулу, использованную в определении интенсивности I, для потока энергии dW через элементарную площадку dA: dW=In cosq dW dA dn; пусть In мало меняется в пределах принимаемого интервала частот n ¸ n+dn. Тогда полный поток энергии, принятой от источника

Элемент телесного угла dW=sinq dq dj. Энергия W называется плотностью потока излучения на частоте n, обозначается Sn или Fn и измеряется в Вт/м2Гц. Часто используется единица 1 Янский (1 Ян) = 10-26 Вт/м2Гц – такая плотность потока характерна для многих ярких радиоисточников.

Плотность потока – количество энергии, поступающей от источника на единичную площадку за единичный интервал времени в единичном интервале частот. В определение потока не входит зависимость от угла q, важно лишь знать, пересекает ли эта энергия площадку снизу вверх или в обратном направлении.

Если измерено распределение Tb(q, j) (построена карта интенсивности излучения радиоисточника), то можно рассчитать полную плотность потока от источника. При известном расстоянии, например, эта величина характеризует светимость источника. Если же измерить Tb(q, j) невозможно, то вся информация об источнике ограничивается величиной плотности потока.

Зависимость Sn от n называется спектром. Для отрасли радиоастрономии, занимающейся исследованием непрерывного спектра источников ( радиоконтинуума ), измерение Sn(n) – одна из важнейших задач. Уже по общему виду спектра сразу можно судить о природе источника (тепловой или нетепловой).

Порядок величин Sn для некоторых источников: Крабовидная туманность имеет на частоте 178 МГц плотность потока 1420 Ян, радиогалактика Дева A – 970 Ян. Рекордная чувствительность (при наблюдениях в радиоконтинууме) в настоящее время составляет порядка 10 микроянских (~10–30 Вт/м2Гц). Чувствительность ~10 миллиянских (в радиоконтинууме) – рядовая величина для большинства современных радиотелескопов дециметровых и сантиметровых волн.

Оптическая глубина и перенос излучения. Запишем уравнение переноса излучения (для одномерного случая, при распространении излучения вдоль оси x):

In – интенсивность излучения на частоте n; an, en – коэффициенты поглощения и излучения соответственно (на той же частоте n, в расчете на единицу длины). Конкретный вид коэффициентов an, en зависит от механизма излучения (см. Главу 2).

Обе величины (и ) определяются температурой, плотностью и составом газа: относительным содержанием в нем электронов, ионов, атомов и молекул разных сортов. Как правило, радиоизлучение не влияет на состояние среды. Поэтому мы можем считать известными коэффициенты взаимодействия излучения со средой. Поэтому уравнение (1.6) в нашем случае является линейным, и формальное решение уравнения переноса

действительно является решением задачи. Здесь In(0) – интенсивность фонового излучения, приходящего на дальнюю от наблюдателя границу облака (x = 0, рис. 1.1). Интегралы под экспонентами представляют собой оптическую глубину газа в облаке, отсчитанную от разных границ. В первой экспоненте отсчет ведется от дальней границы облака (x = 0) до ближней (x = X). Таким образом, первый член характеризует поглощение фонового радиоизлучения. Второй член описывает излучение облака с учетом самопоглощения. Коэффициент излучения en под знаком интеграла означает плотность энергии, излученной в точке x = x¢. Самопоглощение учитывается экспонентой, показатель которой равен интегралу от коэффициента поглощения, вычисленному от точки излучения до границы облака x = X.

Рассмотрим простой случай, когда облако однородно, следовательно, коэффициенты en, и an   постоянны. При вычислении интегралов во втором слагаемом перед экспонентой появится отношение en/an. В астрофизических условиях поле излучения всегда сильно отличается от поля излучения при термодинамическом равновесии (ТР). Это следует уже из того, что интенсивность излучения зависит от пространственной координаты. Физические условия далеки от ТР даже в элементарном объеме облака. Однако, излучение, поглощаемое элементарным объемом, им перерабатывается, причем такая переработка идет в сторону установления ТР. Поэтому можно предположить, что в каждом месте облака коэффициент излучения en связан с коэффициентом поглощения an таким же соотношением, как и при ТР – законом Кирхгофа, а именно: отношение en/an равно функции Планка или, в нашем случае, функции Рэлея–Джинса Bn(Tc) с температурой Tc, характерной для вещества облака. Это предположение носит название гипотезы о локальном термодинамическом равновесии (ЛТР). Гипотеза ЛТР может с достаточной точностью использоваться во многих случаях решения уравнения переноса. Так, она заведомо применима для глубоких слоев оптически толстых объектов.

В случае ЛТР формула (1.7) принимает вид:

In(X) = In(0) exp(–tn) + Bn(Tc)[1 – exp(–tn)]           (1.8)

Заменим в полученном решении интенсивность In на яркостную температуру согласно формуле Рэлея–Джинса (In µ Tb); T0 – яркостная температура фона на данной частоте. Для наблюдаемой яркостной температуры выходящего излучения Tb¢ получим:

Отметим два предельных случая:

1) t >> 1. В этом случае слагаемое с множителем  пренебрежимо мало, яркостная температура равна температуре облака и не зависит от частоты;

2) t << 1. В этом случае яркостная температура является суммой двух слагаемых:

Первое слагаемое в правой части описывает вклад фонового излучения, а второе – собственное излучение облака. Формальная характеристика поглощения – оптическая глубина – появилась в нем исключительно вследствие того, что мы воспользовались законом Кирхгофа. Прямой подстановкой легко убедиться, что второе слагаемое пропорционально только коэффициенту излучения, как и должно быть в рассматриваемом случае прозрачной среды. Если T0 мала (нет фонового радиоизлучения), то

В этом случае для определения температуры газа в облаке требуется независимая оценка оптической глубины на данной частоте.

Вычтем в (1.9) фон, тогда для линии приращение яркостной температуры внутри профиля равно

Здесь tn резко зависит от частоты. Вне линии оптическая глубина равна нулю, следовательно, DTb¢ (n, X) º 0. Внутри линии множитель в скобках [1–exp(–tn)] лежит в диапазоне от нуля до единицы, а знак приращения DTb¢ (n,X) определяется знаком разности Tc T0. Если фон горячее облака,то линия наблюдается в поглощении; если облако горячее фона –в излучении. Вне линии оптическая глубина мала, и яркостная температура там равна температуре фона.

В заключение кратко суммируем основные задачи экспериментальной радиоастрономии в терминах яркостной температуры: измерение Тb как функции углов (q, j) означает задачу о пространственном распределении излучения, ее исследование как функции частоты, Тb (n) – спектральное распределение; как функции времени, Тb (t) – переменность. Кроме того, важной задачей является измерение поляризации радиоизлучения. Более специальная задача у спектральной радиоастрономии – измерение спектра Тb (n) в относительно узком интервале частот с возможно более высоким разрешением по частоте.

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Планеты соседи:

Хромосфера

News image

Обширная и очень яркая вспышка на Солнце, наблюдавшаяся 9 марта 19...

Меркурий. Строение планеты

News image

С помощью Маринера-10 у Меркурия была обнаружена атмосфера. Дл...

Строение Солнца

News image

ЯДРО - где температура в центре равна 27 м...

Солнечная атмосфера

News image

Вся солнечная атмосфера постоянно колеблется. В ней распространяются как ...

В космосе...

NASA отложило на два года запуск нового марсохода

News image

Национальное аэрокосмическое агентство США (NASA) приняло решение отложить до 2011 года запуск марсохода нового поколения Mars Science Laboratory, сообщается на оф...

Ремонт телескопа Хаббл намечен на 12 мая

News image

Назначено время старта ремонтной миссии к находящемуся в аварийном состоянии телескопу Хаббл . 12 мая с мыса Канаверал в шт...

Как бы далеко ни уходили от Земли

News image

12 апреля 1961 года в 9 часов 07 минут по московскому времени в Советском Союзе был дан старт космическому кораблю «В...

NASA провело испытания новых лунных роботов

News image

NASA провело испытания своих новых лунных роботов. Тесты проводились со второго по тринадцатое июня в Мозес-Лейк (Moses Lake) в штате Ва...

Авторизация



Новости космонавтики:

Узбекские песни

Узбекские песни

Скачать музыку

News image

Усиливает эффект лекарств Ученые установили что люди, которые страдают высоким артериальным давлением, должны слушать музыку, после того как принимают лекарства, это дает возможность усиливать воздействие препаратов. ...

Такси минивэны

News image

Минивэн это отличная вместительная машина, если сравнивать с легковым седаном либо универсалом. Благодаря крупным размерам, примерно 5-ть метро в длину, внутри кузова пассажиры могут разместиться с ко...

Скачать песню бесплатно

News image

Современная классическая музыка – наверное, такое сочетание слов для вас звучит странно. Но в любом случае не стоит её отрицать. У большинства людей появляется сочетание, ...